

EnteroPluri-Test

Identification system of *Enterobacteriaceae* and other gram negative, oxidase negative bacteria.

DESCRIPTION

EnteroPluri-*Test* is a 12-sector system containing special culture media that permits identification of the *Enterobacteriaceae* and other gram negative, oxidase negative bacteria.

The system allows the simultaneous inoculation of all media present in the sectors and the execution of 15 biochemical reactions.

Microorganism is identified evaluating the colour change of the different culture media after 18-24 hours of incubation at $36 \pm 1^{\circ}$ C and by a code number obtained from biochemical reaction interpretation.

CONTENT OF THE PACKAGE

Each package contains 10 or 25 EnteroPluri-Test.

ITEMS NECESSARY BUT NOT INCLUDED IN THE	PACKAGE
Indole Reagent (Kovacs' reagent)	EnteroPluri-Test Codebook:
Oxidase Reagent (Oxidase test)	www.liofilchem.com/EPT-US
Voges-Proskauer Reagent (VP test)	

CONFIGURATION

The configuration of the system is shown in Table no. 1.

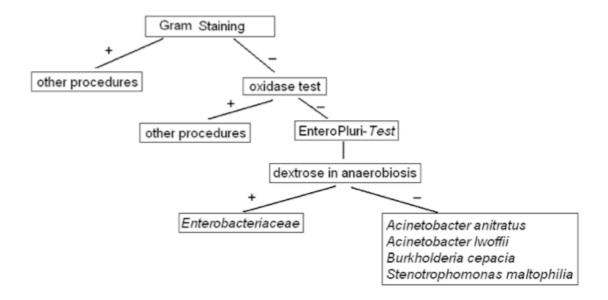
Table no. 1:

Sector	BIOCHEMICAL REACTIONS
Glucose/Gas	Glucose fermentation and gas production in anaerobiosis
Lysine	Lysine decarboxylation in anaerobiosis
Ornithine	Ornithine decarboxylation in anaerobiosis
H ₂ S/Indole	Hydrogen sulphide production and indole test
Adonitol	Adonitol fermentation
Lactose	Lactose fermentation
Arabinose	Arabinose fermentation
Sorbitol	Sorbitol fermentation
VP	Acetoin production (Voges-Proskauer)
Dulcitol/PA	Dulcitol fermentation and phenylalanine deamination
Urea	Urea hydrolysis
Citrate	Citrate utilization

PRINCIPLE OF THE METHOD

EnteroPluri-*Test* makes possible the identification of the *Enterobacteriaceae* and other gram negative, oxidase negative bacteria isolated from non-clinical samples.

The identification is based on biochemical tests performed on culture media containing specific substrates. The combination of positive and negative reactions allows to build up a code number that permits to identify bacteria by using the **Codebook.**


SAMPLE COLLECTION

EnteroPluri-*Test* is used for identification of gram negative, oxidase negative bacteria isolated in selective culture media for *Enterobacteriaceae* growth as: Mac Conkey Agar (MCA), Eosin Methylene Blue Agar (EMBA), Salmonella and Shigella Agar (SSA), Hektoen Enteric Agar (HEEA), or in not selective culture media.

TEST PROCEDURE

The microorganism to be identified should be recently isolated (18-24 hours): bacteria from cultures older than 48 hours can provide unreliable results.

Before inoculating the microorganism to be identified, it is compulsory to perform a gram staining and oxidase test on the microorganism. Only gram negative, oxidase negative bacteria should be inoculated on **EnteroPluri-Test**. For the correct performance of both tests please consult appropriate bacteriology manuals.

- Pick up an **EnteroPluri-***Test* system from the package and note identifying name of the sample to submit to identification, date of test and other useful information.
- Remove both caps of the system. Using the tip of inoculating needle, placed under the white cap, and without flambing, pick up a well isolated colony from a selective or non selective agar medium, without penetrating into the agar.
- Inoculate **EnteroPluri-***Test* turning and withdrawing the needle throughout the sectors of the system.
- Reinsert the needle with a turning movement until the breakage notch; break the inoculating needle
 folding it in correspondence with the notch. The portion of the needle remaining inside the system
 keeps anaerobic conditions necessary for reactions of the sectors Glucose/Gas, Lysine and
 Ornithine.
- Use the broken portion of the needle, remained in the user hands, to punch the plastic film in correspondence of the holes of the sectors **Adonitol**, **Lactose**, **Arabinose**, **Sorbitol**, **VP**, **Dulcitol/PA**, **Urea**, **Citrate** in order to support aerobic growth.
- Screw again both caps and incubate **EnteroPluri-***Test* at $36 \pm 1^{\circ}$ C for 18-24 hours, putting it on its flat surface or vertically in a test-tube holder with the sector Glucose/Gas pointing upward.

INTERPRETATION OF RESULTS

At the end of incubation:

- Observe the change in colour of culture media in the different sectors and interpret results using the table no. 2 and, in case, an **EnteroPluri-***Test* not inoculated and kept at room temperature.
 - NOTE: if there is no change in colour in the sector **Glucose/Gas** while in some other sectors there are chromatic changes, the microorganism under test does not belong to the family of *Enterobacteriaceae*. The **Codebook** also includes many codes of microorganisms that do not ferment glucose in anaerobiosis, but sometimes some additional biochemical reactions may be necessary for a correct identification of these nonfermenters.
- Record the obtained results on the enclosed data chart, except Indole test (sector **H₂S/Indole**) and Voges-Proskauer test (sector **VP**). Then perform Indole and Voges-Proskauer tests.

Indole test

Lay **EnteroPluri-***Test* with its flat surface pointing upward and, by punching the plastic film, add 3 or 4 drops of Kovac's Indole Reagent in the sector **H₂S/Indole**.

The reaction is positive if a pink-red colour develops in the added reagent within 10-15 seconds.

Voges-Proskauer test

This test is required if the database with VP is used; if the database without VP is used, it may be run as a confirmatory test. .

Lay **EnteroPluri-***Test* with its flat surface pointing upward and, by punching the plastic film, add 3 drops of α -naphtol and 2 drops of potassium hydroxide.

The reaction is positive if a red colour develops within 20 minutes.

- Form the 5-digit code following the instructions provided in the paragraph CODE NUMBER FORMING.
- Identify the bacterium using the Codebook.

Table no. 2:

		Sector	colour
Sector	BIOCHEMICAL REACTIONS	Positive	Negative
		reaction	reaction
Glucose/Gas	Glucose fermentation	yellow	red
Glucose/ Gas	Gas production	lifted wax	overlaying wax
Lysine	Lysine decarboxylation	violet	yellow
Ornithine	Ornithine decarboxylation	violet	yellow
H ₂ S/Indole	Hydrogen sulphide production	black-brown	beige
H ₂ S/IIIdole	Indole test	pink-red	colourless
Adonitol	Adonitol fermentation	yellow	red
Lactose	Lactose fermentation	yellow	red
Arabinose	Arabinose fermentation	yellow	red
Sorbitol	Sorbitol fermentation	yellow	red
VP	Acetoin production	red	colourless
Dulcitol/PA	Dulcitol fermentation	yellow	green
Duicitoi/PA	Phenylalanine deamination	dark brown	green
Urea	Urea hydrolysis	purple	beige
Citrate	Citrate utilisation	blue	green

CODE NUMBER FORMING: DATABASE WITH VP

The 15 biochemical tests are divided into 5 groups each containing 3 tests and each test is indicated with a positivity value of 4,2,1.

- Value 4 : first test positive in each group (**Glucose**, **Ornithine**, **Adonitol**, **Sorbitol**, **PA**)
- Value 2 : second test positive in each group (Gas, H₂S, Lactose, VP, Urea)
- Value 1 : third test positive in each group (Lysine, Indole, Arabinose, Dulcitol, Citrate)
- Value 0 : every negative test

Adding the number of positive reactions in each group, it is obtainable a 5 digit code which, by the use of the **Codebook**, allows the identification of the microorganism under examination as in the following examples.

EXAMPLE 1

	(Group 1	1	Group 2			Group 3			Ü	Group 4	1	Group 5		
Test	Clucose	Gas	Lysine	Ornithine	H ₂ S	Indole	Adonitol	Lactose	Arabinose	Sorbitol	VP	Dulcitol	PA	Urea	Citrate
Positivity code	4	2	1	4	2	1	4	2	1	4	2	1	4	2	1
Results	+	-	-	-	+	-	-	-	-	-	-	-	+	+	+
Code	4	4+0+0=4			0+0+0=0			0+0+0=0			+0+0=	0	4+2+1=7		
CODE: 40007				IDEN ⁻	TIFICAT	ΓΙΟΝ: F	Provider	ncia stu	artii – P	roteus	vulgaris	– Prote	eus mira	abilis	

The code obtained in the above example is located in section ENTEROBACTERIACEAE. At the number read as follows:

ENTEROBACTERIACEAE (metodo con VP) ENTEROBACTERIACEAE (method with VP)

Codice numerico Code number	Microrganismo <i>Microorganism</i>	Test atipici Atypical tests
40007	Providencia stuartii	IND+
	Proteus vulgaris	H ₂ S+,IND+
	Proteus mirabilis	ORN+,H ₂ S+

CONCLUSION: the code 40007 identify the microorganims Providencia stuartii, Proteus vulgaris and Proteus mirabilis. Confirmatory test should be carried out to obtain an accurate identification. For each microorganism are indicated the corresponding atypical tests. Any biochemical test result, obtained with **EnteroPluri-***Test*, which is improbable for a given species, when compared with the **Table of biochemical reactions** (Table no. 4), is considered an atypical test.

EXAMPLE 2

	•	Group 1	1	Group 2			Group 3			(Group 4	1	Group 5		
Test	Glucose	Gas	Lysine	Ornithine	H ₂ S	Indole	Adonitol	Lactose	Arabinose	Sorbitol	VP	Dulcitol	PA	Urea	Citrate
Positivity code	4	2	1	4	2	1	4	2	1	4	2	1	4	2	1
Results	+	+	-	+	+	-	-	-	-	-	+	ı	+	+	-
Code	4	+2+0=	6	4	+2+0=	6	0	+0+0=	0	0	+2+0=	2	4	+2+0=	6
CODE: 66026				IDENTIFICATION: Proteus mirabilis											

The code obtained in the above example is located in section ENTEROBACTERIACEAE. At the number read as follows:

	ENTEROBACTERIACEAE (metodo con VP)											
	ENTEROBACTERIACEAE (method with VP)											
Codice numerico	Microrganismo	Test atipici										
Code number	Microorganism	Atypical Tests										
66026	Proteus mirabilis	NONE										

CONCLUSION: the code 66026 identifies the microorganism *Proteus mirabilis*. No atypical test found. Confirmatory tests are not necessary.

CODE NUMBER FORMING: DATABASE WITHOUT VP

The 14 biochemical tests are divided into 5 groups; Group 1 consists of 2 tests, while the Groups 2-5 consist of 3 tests. Each test is indicated with a value of positivity of 4,2,1.

- Value 4: first test positive in groups 2, 3, 4 and 5 (Lysine, Indole, Arabinose, PA)
- Value 2 : first test positive in first group and second test positive in remaining groups (**Glucose**, **Ornithine**, **Adonitol**, **Sorbitol**, **Urea**)
- Value 1 : second test positive in first group and third test positive in remaining groups (Gas, H₂S, Lactose, Dulcitol, Citrate)
- Value 0 : every negative test

Adding the number of positive reactions in each group, it is obtainable a 5 digit code which, by the use of the **Codebook** (Database without VP), allows the identification of the microorganism under examination as in the following examples.

An asterisk (*) next to the identification indicates the presence of a rare organism. If a rare organism is the best choice, check the purity of the isolate and repeat the inoculation. Also, if a rare organism is encountered as the first choice, and common microbes are also listed, confirmatory tests must be done. The frequency of occurrence of these rare isolates is so low (often less than once per year) that a technical error such as a mixed or light inoculum should be ruled out before reporting the results.

EXAMPLE 1

	Gro	up 1	(Group :	2	(Group 3	3		Gro	up 4	Group 5				
Test	Glucose	Gas Lysine Ornithine H ₂ S		H ₂ S	Indole	Adonitol	Lactose	Arabinose	Sorbitol	Dulcitol		PA Urea		Citrate		
Positivity code	2	1	4	2	1	4	2	1	4	2		1	4	2	1	
Results	+	+	+	+	-	-	+	-	+	+		-	-	-	+	
Code	2+	I=3	4	4+2+0=6			0+2+0=2 4+2+0=6						0+0+1=1			
CODE: 36261	*		l	DENTI	FICATION	DN: Enterobacter aerogenes – Serratia liquefacien						efaciens	5			

The code 36261 obtained in the above example is located in section ENTEROBACTERIACEAE. At the number read as follows:

	ENTEROBACTERIACEAE (metodo senza VP)										
	ENTEROBACTERIACEAE (method without VP)											
Codice numerico Microrganismo Test atipici												
Code number	Microorganism	Atypical Tests										
36261	Enterobacter aerogenes	LAC -										
	Serratia liquefaciens	ADO +										

CONCLUSION: the code 36261 identifies the microorganism *Enterobacter aerogenes* or *Serratia liquefaciens*. Confirmatory test should be carried out to obtain an acccurate indentification. For each microorganism the corresponding atypical tests are indicated. Any biochemical test result, obtained with **EnteroPluri-Test**, which is improbable for a given species, when compared with the **Table of biochemical reactions** (Table no. 4), is considered an atypical test.

EXAMPLE 2

	Gro	up 1	Group 2			(Group 3			Gro	up 4		Group 5			
Test	Glucose	Gas	Lysine	Ornithine	H ₂ S	Indole	Adonitol	Lactose	Arabinose	Sorbitol		Dulcitol	PA	Urea	Citrate	
Positivity code	2	1	4	2	1	4	2	1	4	2		1	4	2	1	
Results	+	+	+	+	-	-	-	-	+	+		-	-	-	+	
Code	2+	1=3	4	4+2+0=6			0+0+0=0 4+2+0=6							0+0+1=1		
CODE: 36061				DENTI	FICATION	DN : $S\epsilon$	N: Serratia liquefaciens									

The code 36261 obtained in the above example is located in section ENTEROBACTERIACEAE. At the number read as follows:

F	NTEROBACTERIACEAE (metodo senza VP)											
	NTEROBACTERIACEAE (method without VP											
Codice numerico	Codice numerico Microrganismo Test atipici											
Code number	Microorganism	Atypical Tests										
36061	Serratia liquefaciens	NONE										

CONCLUSION: the code 36061 identifies the microorganism *Serratia liquefaciens*. No atypical test found. Confirmatory tests are not necessary.

USER QUALITY CONTROL

Inoculate **EnteroPluri-***Test* using the reference bacterial strains indicated in the table no. 3. For inoculation, incubation and reading please follow the instructions indicated in the paragraph **TEST PROCEDURE**.

Table no. 3:

Microorganisms	Clucose	Gas	Lysine	Ornithine	H ₂ S	Indole	Adonitol	Lactose	Arabinose	Sorbitol	VP	Dulcitol	PA	Urea	Citrate	Acceptable biocodes
Escherichia coli ATCC 25922	+	±	+	+	-	+	-	+	+	+	-	-	-	-	-	75340
Proteus mirabilis ATCC 25933	+	±	-	+	+	-	-	-	-	-	±	-	+	+	±	66007
Klebsiella pneumoniae ATCC 13883	+	±	+	-	-	-	+	+	+	+	±	+	-	±	+	70773 70771 70753 70751
Salmonella Typhimurium ATCC 14028	+	±	+	±	+	-	-	-	+	+	-	-	-	-	±	52140
Pseudomonas aeruginosa* ATCC 27853	-	-	-	-	-	-	-	-	±	-	-	-	-	±	+	*

^{*}Pseudomonas aeruginosa is oxidase positive, therefore it is not included in the **EnteroPluri-Test Codebook.**

TABLE OF BIOCHEMICAL REACTIONS

Table no. 4: Percentage of strains giving positive reactions with 18-24 h incubation at 36 ± 1 °C.

			Glucose	Gas	Lysine	Ornithine	H ₂ S	Indole	Adonitol	Lactose	Arabinose	Sorbitol	Voges- Proskauer	Dulcitol	Phenylalanine	Urea	Citrate
Escherichieae Edwardsiellae		Escherichia	+ 100.0	+J 92.0	d 80.6	d 57.8	-K 4.0	+ 96.3	- 5.2	+J 91.6	+ 91.3	+/- 80.3	0.0	d 49.3	- 0.1	0.1	0.2
		Shigella	+ 100.0	-A 2.1	- 0.0	-/+B 20.0	0.0	-/+ 37.8	0.0	-B 0.3	+/- 67.8	-/+ 29.1	0.0	d 5.4	0.0	0.0	0.0
		Edwardsiella	+ 100.0	+ 99.4	+ 100.0	+ 99.0	+ 99.6	+ 99.0	0.0	0.0	+/- 10.7	0.2	0.0	0.0	0.0	0.0	0.0
eae		Salmonella	+ 100.0	+C 91.9	+H 94.6	+I 92.7	+E 91.6	- 1.1	0.0	- 0.8	+/- 89.2	+ 94.1	0.0	dD 86.5	0.0	0.0	dF 80.1
		Arizona	+ 100.0	+ 99.7	+ 99.4	+ 100.0	+ 98.7	2.0	0.0	D 69.8	+ 99.1	+ 97.1	0.0	0.0	0.0	0.0	+ 96.8
Salmonelleae	Citrobacter	freundii	+ 100.0	+ 91.4	0.0	d 17.2	+/- 81.6	- 6.7	0.0	d 39.3	+ 100.0	+ 98.2	0.0	d 59.8	0.0	dw 89.4	+ 90.4
Salm		amalonaticus	+ 100.0	+ 97.0	0.0	+ 97.0	0.0	+ 99.0	0.0	+/- 70.0	+ 99.0	+ 97.0	0.0	-/+ 11.0	0.0	+/- 81.0	+ 94.0
		diversus	+ 100.0	+ 97.3	0.0	+ 99.8	0.0	+ 100.0	+ 100.0	d 40.3	+ 98.0	+ 98.2	- 0.0	+/- 52.2	0.0	dw 85.8	+ 99.7
Proteeae	Proteus	vulgaris	+ 100.0	+/-G 86.0	0.0	0.0	+ 95.0	+ 91.4	0.0	0.0	0.0	0.0	- 0.0	0.0	+ 100.0	+ 95.0	d 10.5
		mirabilis	+ 100.0	+G 96.0	0.0	+ 99.0	+ 94.5	3.2	0.0	2.0	0.0	0.0	-/+ 16.0	0.0	+ 99.6	+/- 89.3	+/- 58.7
	Morganella	morganii	+ 100.0	+/-G 86.0	- 0.0	+ 97.0	- 0.0	+ 99.5	- 0.0	0.0	- 0.0	- 0.0	- 0.0	- 0.0	+ 95.0	+ 97.1	0.0
	Providencia	alcalifaciens	+ 100.0	dG 85.2	- 0.0	1.2	0.0	+ 99.4	+ 94.3	0.3	0.7	0.6	- 0.0	0.0	+ 97.4	- 0.0	+ 97.9
		stuartii	+ 100.0	0.0	- 0.0	0.0	0.0	+ 98.6	-/+ 12.4	3.6	4.0	3.4	- 0.0	0.0	+ 94.5	-/+ 20.0	93.7
		rettgeri	+ 100.0	-/+G 12.2	- 0.0	- 0.0	- 0.0	+ 95.9	99.0	d 10.0	0.0	1.0	- 0.0	- 0.0	+ 98.0	+ 100.0	+ 96.0
	Enterobacter	cloacae	+ 100.0	+ 99.3	- 0.0	+ 93.7	0.0	0.0	-/+ 28.0	+/- 94.0	+ 99.4	+ 100.0	+ 100.0	d 15.2	- 0.0	-/+ 74.6	+ 98.9
		sakazakii	+ 100.0	+ 97.0	- 0.0	+ 97.0	0.0	-/+ 16.0	- 0.0	+ 100.0	+ 100.0	0.0	+ 97.0	6.0	0.0	- 0.0	+ 94.0
		gergoviae	+ 100.0	93.0	+/- 64.0	+ 100.0	- 0.0	0.0	- 0.0	-/+ 42.0	+ 100.0	- 0.0	+ 100.0	- 0.0	- 0.0	+ 100.0	+ 96.0
		aerogenes	+ 100.0	+ 95.9	+ 97.5	+ 95.9	- 0.0	- 0.8	+ 97.5	+ 92.5	+ 100.0	+ 98.3	+ 100.0	- 4.1	- 0.0	- 0.0	+ 92.6
	Pantoea	agglomerans	+ 100.0	-/+ 24.1	- 0.0	- 0.0	0.0	-/+ 19.7	7.5	d 52.9	+ 97.5	d 26.3	+/- 64.8	d 12.9	-/+ 27.6	d 34.1	d 84.2
ae	Hafnia	alvei	+ 100.0	+ 98.9	+ 99.6	+ 98.6	0.0	0.0	- 0.0	d 2.8	99.3	- 0.0	+/- 65.0	2.4	0.0	3.0	d 5.6
Klebsielleae	Serratia	marcescens	+ 100.0	+/-G 52.6	+ 99.6	99.6	0.0	-w 0.1	-/+ 56.0	1.3	0.0	+ 99.1	+ 98.7	0.0	0.0	dw 39.7	+ 97.6
Kleb		liquefaciens	100.0	d 72.5	+/- 64.2	+ 100.0	0.0	-w 1.8	8.3	d 15.6	+ 97.3	97.3	-/+ 49.5	0.0	0.9	dw 3.7	93.6
		rubidaea	100.0	dG 35.0	+/- 61.0	0.0	0.0	-w 2.0	+/- 88.0	+ 100.0	+ 100.0	8.0	+ 92.0	0.0	0.0	dw 4.0	+/- 88.0
	Klebsiella -	pneumoniae	+ 100.0	+ 96.0	+ 97.2	- 0.0	0.0	0.0	+/- 89.0	+ 98.7	+ 99.9	+ 99.4	93.7	-/+ 33.0	0.0	+ 95.4	+ 96.8
		oxytoca	+ 100.0	+ 96.0	+ 97.2	- 0.0	0.0	+ 100.0	+/- 89.0	98.7	+ 100.0	98.0	93.7	-/+ 33.0	0.0	95.4	+ 96.8
		ozaenae	+ 100.0	d 55.0	-/+ 35.8	1.0	0.0	0.0	+ 91.8	d 26.2	+ 100.0	+/- 78.0	- 0.0	0.0	0.0	d 14.8	d 28.1
		rhinoscleromatis	100.0	0.0	0.0	- 0.0	0.0	0.0	98.0	d 6.0	+ 100.0	+ 98.0	- 0.0	0.0	0.0	0.0	0.0
ieae	Yersinia	enterocolitica	+ 100.0	0.0	- 0.0	+ 90.7	0.0	-/+ 26.7	- 0.0	0.0	98.7	+ 98.7	- 0.1	0.0	0.0	+ 90.7	0.0
Yersineae		pseudotuberculosis	+	-	-	-	-	-	-		+/-	-	-	-	-	+	-
<u> </u>	Positive	<u> </u>	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	55.0	0.0	0.0	0.0	0.0	100.0	0.0

- + Positive
- Negative
- +/- Mostly positive
- -/+ Mostly negative
- d Different biochemical types
- w Weak reaction

slowly

- .. Trount odding.
- A Certain biotypes of *S.flexneri* form gasB *S.sonnei* strain usually ferment lactose very
- **C** S.typhi and S.gallinarum are anaerogenic

- D S.typhi, S. cholerae-suis, S.enteritidis bioserotypes paratyphi A and pullorum, and a few others do not ferment dulcitol promptly
- E S.enteritidis bioserotypes paratyphi A and some rare biotypes may be H₂S-negative
- **F** S.typhi, S.enteritidis bioserotypes paratyphi A and some rare biotypes are citrate-negative. S.cholerae-suis is usually delayed positive
- G Serratia, Proteus and Providencia alcalifaciens develop a little quantity of gas. Their gas production bay be not evident
- H S.enteritidis bioserotype parathyphi A is lysine-negative
- I S.typhi and S.gallinarum are ornithine-negative
- J The Alkalescens-Dispar (A-D) group is included as a biotype of E.coli. Members of the A-D group are generally nonmotile, lactose-negative and do not form gas
- K An occasional strain may produce hydrogen sulfide

FACTORS THAT MAY INVALIDATE THE RESULTS

- Use of mixed cultures.
- Application of the method to bacteria not belonging to the family of *Enterobacteriaceae* or to non gram negative, oxidase negative bacteria.
- · Use of expired systems.
- Test procedure different from the one suggested.

PRECAUTION

For Laboratory Use. The product, **EnteroPluri-***Test*, cannot be classified as hazardous under current legislation and does not contain harmful substances in concentrations ≥1%. It therefore does not require a Safety Data Sheet to be available. **EnteroPluri-***Test* is a disposable device to be used only for *in vitro* diagnostic use; it is intended for use in a professional environment and should be used in laboratory by properly trained personnel, using approved asepsis and safety methods for handling pathogenic agents.

STORAGE

Store at 2-8°C away from light. In such conditions, the product will remain valid until the expiry date indicated on the label. Do not use beyond that date. Eliminate without using them if there are signs of deterioration.

DISPOSAL OF USED MATERIAL

After use, **EnteroPluri-***Test* should be decontaminated and disposed off in accordance with the techniques used in the laboratory for decontamination and disposal of potentially infected material.

BIBLIOGRAPHY

- Bascomb, S., Lapage, S.P., Curtis, M.A., Willcox, W.R. J Gen Microbiol 77:291-315. 1973.
- Brenner, D.J., Farmer, J.J., Hickmann, F.W., Asbury, M.A., Steigerwalt, A.G.: Taxonomic and Nomenclature Changes in Enterobacteriaceae; Washington, DC: U.S. Dept. Of Health, Education and Welfare, Public Haelth Service, National Centre for Disease Control. 1977.
- Coppel, S.P., Coppel, I.G. Am J Clin Pathol 61:218-222. 1974.
- Murray, Baron, Pfaller, Tenorev and Yolken. Manual of clinical Microbiology. 1999. 7th Edition.
- Edwin, H.Lenette. Manual of clinical Microbiology. 1985. 4th Edition (ASM).
- Dito W. R., Bulmash J., Campbell J., Roberts E. A numerical Coding and Identification System for Enterobacteriaceae. Chicago: American Society of Clinical Pathologists, Commission on Continuing Education, Illinois. 1972.
- Ewing, W. H. Differentiation of Enterobacteriaceae by Biochemical Reactions. Washington, DC. U.S. Dept. of Health, Education and Welfare, Public Health Service, National Center for Disease Control. 1973.
- EnteroPluri-Test Archivio Liofilchem, Marzo 2005.

PRESENTATION

Product	Ref.	Package
EnteroPluri-Test	78618U	10 test
Enterorium-7est	78619U	25 test

TABLE OF SYMBOLS

(2)	Do not reuse
	Manufacturer
Σ	Contains sufficient for <n> tests</n>
REF	Catalogue number
Ţ	Fragile, handle with care
\subseteq	Use By
[]i	Consult instructions for use
1	Temperature limitation
LOT	Batch code
	Store away from light

Liofilchem® and the Liofilchem company logo are registered trademarks of LIOFILCHEM s.r.l.

Distributed by: Liofilchem, Inc.

465 Waverley Oaks Rd. Suite 317 Waltham, MA 02452, USA 781-902-0312 www.liofilcheminc.com

Via Scozia, 64026 Roseto degli Abruzzi (TE), Italy Tel +39 0858930745 Fax +39 0858930330 www.liofilchem.com